Global risk bounds and adaptation in univariate convex regression

نویسنده

  • Adityanand Guntuboyina
چکیده

We consider the problem of nonparametric estimation of a convex regression function φ0. We study the risk of the least squares estimator (LSE) under the natural squared error loss. We show that the risk is always bounded from above by n−4/5 (up to logarithmic factors) while being much smaller when φ0 is well-approximable by a piecewise affine convex function with not too many affine pieces (in which case, the risk is at most 1/n up to logarithmic factors). On the other hand, when φ0 has curvature, we show that no estimator can have risk smaller than a constant multiple of n−4/5 in a very strong sense by proving a “local” minimax lower bound. We also study the case of model misspecification where we show that the LSE exhibits the same global behavior provided the loss is measured from the closest convex projection of the true regression function. In the process of deriving our risk bounds, we prove new results for the metric entropy of local neighborhoods of the space of univariate convex functions. These results, which may be of independent interest, demonstrate the non-uniform nature of the space of univariate convex functions in sharp contrast to classical function spaces based on smoothness constraints.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Generalization Bounds Derived IPM-Based Regularization for Domain Adaptation

Domain adaptation has received much attention as a major form of transfer learning. One issue that should be considered in domain adaptation is the gap between source domain and target domain. In order to improve the generalization ability of domain adaption methods, we proposed a framework for domain adaptation combining source and target data, with a new regularizer which takes generalization...

متن کامل

Optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means

We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)

متن کامل

Predictive factors for infertility of women: an univariate and multivariate logistic regression analysis

Background and aims: Infertility is a major problem during reproductive age. Physical and psychological effects of infertility in women are problematic. The aim of this study was to determine the potential predictive factors of infertility, among women referring both public and private health centers in Ilam province, western Iran, in 2013. Methods: In this cross-sectional study, 1013 women re...

متن کامل

Inequalities of Ando's Type for $n$-convex Functions

By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013